
Max-min Average Algorithm for Scheduling Tasks
in Grid Computing Systems

George Amalarethinam. D.I, Vaaheedha Kfatheen .S

Dept of Comp. Sci & IT,Jamal Mohamed College(Autonomous),
Trichirappalli, TN, India.

Abstract—The Grid computing provides the opportunity to use
the remote resources in the network for resolving the large scale
tasks. These large tasks can be either scientific or technology
related tasks, which require large amount of processing time
since they handle large amount of data. The major objective of
grid computing is to decompose the larger tasks into smaller
tasks, which can be either dependent or independent tasks.
Mostly in the grid computing systems the resources can be of
two types. They are homogenous system and heterogeneous
system. The major problem of task scheduling or job scheduling
comes when the resources are of different types. That is, the
heterogeneous system, this problem of mapping the task to the
resources is called the NP-Complete. The previous experiments
and the results have proved that NP-Problem can be best solved
by the heuristic approach rather than other approaches. In this
paper we have proposed a new heuristic technique called Max-
min Average algorithm for task scheduling in the heterogeneous
grid computing environment. Usually the performance of the
grid computing is measured by the reduction in the idle time
and makespan. The proposed Max-min Average algorithm
proves that it is efficient than the other heuristic algorithms by
reducing the idle time and make span than the other
algorithms.

Keywords— Grid computing, Task Scheduling, NP-Problem,
Heuristic Algorithm, Load Balancing.

I. INTRODUCTION

Although many types of resources can be shared and used in
a Grid system, usually they are accessed through an
application running in the Grid. Normally, an application is
used to define the piece of work of higher level in the Grid.
An application can generate several jobs, which in turn can
be composed of subtasks; the Grid system is responsible for
sending each subtask to a resource to be solved.

Scheduling is a process that maps and manages execution of
independent tasks on distributed resources. Mapping tasks to
machines in an HC Suite is an NP-Complete problem and,
therefore the use of heuristics is one of the suitable
approaches. Existing scheduling heuristics can be divided
into two classes: On-line mode and Batch-mode heuristics. In
the on-line mode, a task is mapped onto a host as soon as it
arrives at the scheduler. In the batch mode, tasks are not
mapped on to hosts immediately and they are collected in to
a set of tasks that is examined for mapping at prescheduled
times called mapping events. In this paper, we considered
batch-mode heuristics. Different criteria can be used for
evaluating the efficiency of scheduling algorithms, the most
important of which are makespan and flowtime. Makespan is
the time when Heterogeneous Computing system finishes the
latest task. An optimal schedule will be the one that
minimizes the makespan[1].

In this paper, we proposed an efficient heuristic Max-min
average algorithm by taking the mean of the completion time
of all tasks. Our algorithm aims to minimize the idle time and
makespan of the tasks.

The rest of the paper is organized as follows. In Section 2
describes existing heuristics and meta-heuristics based
workflow scheduling techniques on distributed systems such
as Grid. Section 3 specifies the problem description. The
proposed Max-min Average algorithm is presented in Section
4. Experiment results are presented in Section 5. Finally, this
paper concludes with the direction for future work in Section
6.

II. LITERATURE SURVEY

A set of static heuristic for task scheduling in heterogeneous
computing environments are available. A range of simple
greedy constructions heuristic approaches are compared and
some of them are briefly described below:-

OLB: Opportunistic Load Balancing (OLB) assigns each
task, in arbitrary order, to the next machine that is expected
to be available, regardless of the task's expected execution
time on that machine [3],[4],[5]. The intuition behind OLB is
to keep all machines as busy as possible. One advantage of
OLB is its simplicity, because OLB does not consider
expected task execution times, the mappings it finds can
result in very poor makespans.
MET: In contrast to OLB, Minimum Execution Time (MET)
assigns each task, in arbitrary order, to the machine with the
best expected execution time for that task, regardless of that
machine's availability[3],[4]. The motivation behind MET is
to give each task to its best machine. This can cause a severe
load imbalance across machines. In general, this heuristic is
obviously not applicable to HC environments characterized
by consistent ETC matrices.
MCT: Minimum Completion Time (MCT) assigns each task,
in arbitrary order, to the machine with the minimum expected
completion time for that task [3]. This causes some of the
tasks to be assigned to the machines that do not have the
minimum execution time for them. The intuition behind
MCT is to combine the benefits of OLB and MET, while
avoiding the circumstances in which OLB and MET perform
poorly.
Min-min: The Min-min heuristic begins with the set U of all
unmapped tasks. Then, the set of minimum completion times,
M={min0≤j<µ(ct(ti,mj)), for each ti # U}, is found. Next, the
task with the overall minimum completion time from M is
selected and assigned to the corresponding machine (hence
the name Min-Min).

George Amalarethinam. D.I et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3659-3663

3659

At last, the newly mapped task is removed from U, and the
process repeats until all the tasks are mapped (i.e., U is
empty)[3],[4],[6]. Min-min is based on the minimum
completion time, as is MCT. However, Min-min considers all
the unmapped tasks during each mapping decision and MCT
only considers one task at a time. Min-min maps the tasks in
the order that changes the machine availability status by the
least amount that any assignment could. Let ti be the first
task mapped by Min-min onto an empty system. The
machine that finishes ti the earliest, say mj, is also the
machine that executes ti the fastest. For every task that Min-
min maps after ti, the Min-min heuristic changes the
availability status of mj

Max-min: The Max-min heuristic is very similar to Min-min.
The Max-min heuristic also begins with the set U of all
unmapped tasks. Then, the set of minimum completion times,
M, is found. Next, the task with the overall maximum
completion time from M is selected and assigned to the
corresponding machine (hence the name Max-min). At last,
the newly mapped task is removed from U, and the process
repeats until all the tasks are mapped (i.e., U is
empty)[3],[4],[6]. Intuitively, Max-min attempts to minimize
the penalties incurred from performing tasks with longer
execution times. For example, assume that the metatask
being mapped has many tasks with very short execution
times and one task with a very long execution time. Mapping
the task with the longer execution time to its best machine
first allows this task to be executed concurrently with the
remaining tasks (with shorter execution times). For this case,
this would be a better mapping than a Min-min mapping,
where all of the shorter tasks would execute first, and then
the longer running task would execute while several
machines sit idle. Thus, in cases similar to this example, the
Max-min heuristic may give a mapping with a more balanced
load across machines and a better makespan.

by the least possible amount for
every assignment. Therefore, the percentage of tasks
assigned to their first choice (on the basis of execution time)
is likely to be higher for Min-min than for Max-min (defined
next). The expectation is that a smaller makespan can be
obtained if more tasks are assigned to the machines that
complete them the earliest and also execute them the fastest.

Duplex: The Duplex heuristic is literally a combination of the
Min-min and Max-Min heuristics. The Duplex heuristic
performs both of the Min-min and Max-min heuristics and
then uses the better solution [3],[4]. Duplex can be performed
to exploit the conditions in which either Min-min or Max-
min performs well, with negligible overhead.
GA : The Genetic algorithm (GA) is a technique used for
searching large solution spaces[7],[8],[9],[10],[11]. The GA
operates on a population of chromosomes for a given meta-
tasks. The initial population is generated by two methods. In
the first method, a chromosome is generated randomly from a
uniform distribution. In the second method, a chromosome is
generated by Min-min and it is called “seeding” the
population with a Min-min chromosome.
SA: Simulated Annealing (SA) is an iterative technique that
considers only one possible mapping for each meta-task at a
time. Simulated annealing uses a procedure that
probabilistically allows poor solutions to be accepted to
attempt to obtain a better search of the solution space based
on a system temperature [8], [12], [13], [14], [15].

GSA: The Genetic Simulated Annealing (GSA) heuristics is a
combination of the GA and SA techniques [16],[17]. GSA
follows the procedures similar to the GA. For the selection
process, GSA uses the SA cooling schedule and system
temperature.
Tabu: Tabu search is a solution space search that keeps track
of the regions of the solution space to avoid repeating a
search near the areas that have already been searched
[8],[18],[19]. A mapping of meta-tasks uses the same
representation as a chromosome in the GA approach. The
implementation of tabu search begins with a random
mapping, generated from a uniform distribution.
A*: A* is a tree search technique based on an m-array tree,
beginning at a root node that is a null solution [20]. As the
tree grows, intermediate nodes represent partial mappings
and leaf nodes represent final mappings. Each node has a
cost function, and the node with the minimum cost function
is replaced by its child node. Whenever a node is added, to
reduce the height of the tree, the tree is pruned by deleting
the node with the largest cost function. This process is
repeated until a complete mapping (a leaf node) is reached.
Though the above stated heuristic algorithms have
advantages, they do have their own disadvantages. OLB
leads to poor makespan since it does not consider the
expected execution time while mapping the meta-tasks to the
machines and it is also hard to achieve dynamic load balance
of jobs. MET results in severe load imbalance across the
machines. Static mapping of meta-task to machine using
MCT heuristic algorithm leads to poor makespan since it
takes more time for a job to map to the particular machine.
Max-min is appropriate only when most of the jobs arriving
to the grid systems are shortest and also Max-min
outperforms Min-min. The experimental results show that
Duplex, SA, GSA, and Tabu do not produce good mappings.
Min-min, GA, and A* were able to deliver good
performance. GA is better than Min-min by few percents,
and also it has to be “seeding” the population with a Min-min
chromosome to obtain its good performance. In different
situations, A* produce better or worse mappings than Min-
min and GA. Among the three algorithms, Min-min is the
fastest algorithm, GA is much slower, and A* is very slow.
Among the stated algorithms, Min-min is the simple and
fastest algorithm and its good performance depends on the
choice of mapping the meta-tasks to the first choice of
minimum execution time. However the drawback of Min-min
is that, it is unable to balance the load because it usually
assigns the small task first and few larger tasks, while at the
same time, several machines sit idle, which leads to poor
utilization of resources. The proposed algorithm retains the
advantage of Min-min algorithm and reduces the idle time of
the resources, which in turn leads to better makespan.

III. PROBLEM DESCRIPTION

We consider a scheduling problem where tasks are to be
allocated immediately to the resources in a global,
heterogeneous and dynamic environment. The allocation
should be as fast as possible, while at the same time
optimizing several criteria such as response time, utilization
and slowdown. The tasks have to be completed on a unique
resource. There are no dependencies between tasks (each task
is independent). The arrival rate of tasks determines the

George Amalarethinam. D.I et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3659-3663

3660

system load. Since we consider a heterogeneous
environment, the processing capacity of each resource in the
system may vary significantly and thus yields different
runtimes for a particular task on different machines.
 An instance of the problem consists of the following:
- A number of independent tasks to be scheduled
- A number of heterogeneous machines (resources)
- The task’s expected time to compute on each machine.
(This depends on the workload of each task and computing
capacity of each machine). The ETC matrix: ETC[i][j] is the
expected execution time for task i on machine j.
- Ready time (ready[m]), the time when machine m will
finish the previously assigned tasks.
In this work, we assume that the computation time for each
task is known accurately before the task begins the execution.

IV. MAX-MIN METHODOLOGY AND

IMPLEMENTATION
 Task scheduling system is the most important part of
grid resource management system. The scheduler receives
the task request, and chooses appropriate resource to run that
requested task. In this paper, the formulation of task
scheduling is based on the expected time to compute (ETC)
matrix. A meta-task is defined as a collection of independent
task (i.e. task doesn’t require any communication with other
tasks) [1, 9]. Tasks derive mapping statically. For static
mapping, the number of tasks, t and the number of machines,
m is known as priori. ETC (i,j) represents the estimated
execution time for task ti on machine mj. The expected
completion time of the task ti on machine mj
 ct (t

 is
i, mj) = mat(mj) + ETC(ti, mj

where mat (m
)

j) is the machine availability time. i.e. the time
at which machine mj

 makespan = max (ct (t

 completes any previously assigned
tasks. The main aim of the heuristic scheduling algorithm is
to minimize the makespan

i, mj
The proposed heuristic scheduling algorithm Min-mean
works in two phases.

))

• In phase 1, the task allocation is done based on the Max-
min algorithm.

• In phase 2, the mean of completion time of all the
machines are taken. The machine whose completion
time is greater than the mean value is selected. The tasks
allocated to the selected machines are reallocated to the
machines whose completion time is less than the mean
value.

The related definition of proposed Max-min Average
heuristic scheduling algorithm is as follows:
• ETij - the amount of time taken by machine Mj to

execute Taski given that Mj is idle when Taski

• CT

 is
assigned.

j - the expected completion time of M
• Mat (m

j
j

• Group (CT

) - the machines availability time i.e. the time at
which Machine j completes any previously assigned
tasks.

i

• The best minimum task/machine pair (m, n) is selected
from the Group

, Machines) –The function “f1” is used to
group all the tasks and machines that has minimum
completion time.

• MeanCT- is used to find the mean completion of all the
machines.

Algorithm Max-Min Average
(1) While there are tasks to schedule
(2) For all Taski
(3) For all Machine

 to schedule

(4) Compute CT
j

i,j ; CTi,j = Mat (mj) + T
(5) End for

ij

(6) Group (CTi, Machines) =f1 (CTi, 1, Ti
(7) End for

, 2 ...)

(8) Select the best maximum pair (task, machine) from the
Group
(9) Compute maximum CT
(10) Reserve task m on n

m,n

(11) End while
//Optimization based on MeanCT
(12) Calculate MeanCT= (ΣCT j)/No of machines
(13) For all Machine
(14) if (CT

j
j

(15) Select tasks reserved on the host
<=MeanCT)

(16) End for
(17) For all Taski
(18) For all Machine

 reselected
j with (CTj

(19) Compute NewCT
 >=MeanCT)

i,j = CT(taski, hostj
(20) if(NewCT

)
i,j

(21) Group (CT
>= MeanCT)

i, Machines) =f1 (CTi, 1, CTi
(22) End for

, 2 ...)

(23) Select the best maximum pair from the Group
(24) Reschedule (taski on machinej
(25) Compute NewCT

)

(26) End for
m,n

V. EXPERIMENT RESULTS

TABLE I : Sample ETC matrix

TASK # M1 M2
T1 1 2
T2 2 4
T3 5 9

Min-min heuristic scheduling algorithm executes all the
shortest tasks first and then the longest tasks. Table 1 gives a
sample ETC matrix, with the expected execution time of
three tasks (t1, t2, t3) on the two machines (m1, m2). This
sample ETC matrix clearly explains how proposed Max-min
average heuristic scheduling algorithm performs better than
the Min-min algorithm. It is assumed that both the machines
are idle at the start.
The sequence of the execution of Min-min algorithm and the
proposed Max-min average heuristic scheduling algorithm is
as follows:
Step 1: Static mapping of tasks to machines based on Min-
min is shown in Figure 1. Min-min algorithm gives a
makespan of 8 sec.

George Amalarethinam. D.I et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3659-3663

3661

Figure 1: Results of Min-min algorithm

Step 2: The mean completion time for the sample ETC
matrix can be calculated by using the following relation:

MeanCT = CTm1+CTm2
where CTm1: Completion time of all tasks on machine m1,
CTm2: Completion time of all tasks on machine m2.
MeanCT = 4 sec.
Step 3: Tasks on machines m1 are selected as shown in the
Figure 2 because of CTm1 > MeanCT.

Figure 2: Selected tasks on machine m1

Step 4: Rescheduling of the tasks on machine m1 to the
machine m2 is done, whose expected execution time is
ETi
The final scheduling of the tasks (t1, t2, t3) on two machines
(m1, m2) using the proposed Min-mean heuristic scheduling
algorithm is shown in the Figure 3. Min-mean heuristic
scheduling algorithm gives a makespan of 7 sec.

 >= MeanCT

Figure 3 : Results of Max-Min Average Algorithm

The Figure 1 and Figure 3 clearly show that the Max-min
Average heuristic scheduling algorithm performs better than
Min-min algorithm.
The comparison results of Figure 1 and Figure 3 is as
follows:
• The idle time of the machine m2 is reduced.
• The load is well balanced in both the machines m1 and

m2.
• The measure of the throughput of the heterogeneous

computing systems is termed as makespan. The
makespan can be calculated as makespan = max (CTi

reduced compared to that of the makespan using Min-
min.

)
Ti ε meta-tasks makespan = 7 sec. Figure 1 and Figure
3 shows that the makespan using Max-Min Average is

CONCLUSION AND FUTURE WORK

The experimental results show that the Max-min Average
heuristic scheduling algorithm performs better than the
existing heuristic algorithm in various systems and settings
and also it delivers improved makespan on various
heterogeneous environments. The future research will be
directed towards the factors such as CPU workload,
communication delay and so on.

REFERENCES
[1] Hesam Izakian, Ajith Abraham, Vaclav Snasel, “Performance

comparison of six efficient pure heuristics for scheduling meta-tasks on
Heterogeneous Distributed Environments”, September 22, 2009.

[2] Hesam Izakian, Ajith Abraham, Vaclav Snasel, “Metaheuristic Based
Scheduling Meta-Tasks in Distributed Heterogeneous Computing
Systems”, Sensors 2009, 9, 5339-5350,7 July 2009, ISSN 1424-8220.

[3] R. Armstrong, D. Hensgen, and T. Kidd, “The relative performance of
various mapping algorithms is independent of sizable variances in run-
time predictions”, in 7th IEEE Heterogeneous Computing Workshop
(HCW '98), pp. 79_87, 1998.

[4] R. F. Freund, M. Gherrity, S. Ambrosius, et al., “Scheduling resources in
multi-user, heterogeneous, computing environments with SmartNet”,
in 7th IEEE Heterogeneous Computing Workshop (HCW '98), pp.
184_199, 1998.

[5] R. F. Freund and H. J. Siegel, Heterogeneous processing, IEEE Comput.
26, 6 (June 1993),13_17.

[6] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on nonidentical processors”, J. Assoc. Comput.
Mach. 24, 2 (Apr. 1977), 280_289.

[7] J. H. Holland, “Adaptation in Natural and Artificial Systems,'' University
of Michigan Press, Ann Arbor, MI, 1975.

[8] Z. Michalewicz and D. B. Fogel, “How to Solve It: Modern Heuristics,''
Springer-Verlag, New York,2000.

[9] H. Singh and A. Youssef, “Mapping and scheduling heterogeneous task
graphs using genetic algorithms”, in 5th IEEE Heterogeneous
Computing Workshop (HCW '96), pp. 86_97, 1996.

[10] Y. G. Tirat-Gefen and A. C. Parker, “MEGA: An approach to system-
level design of application specific heterogeneous multiprocessors”, in
5th IEEE Heterogeneous Computing Workshop (HCW '96), pp.
105_117, 1996.

[11] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski,
“Task matching and scheduling in heterogeneous computing
environments using a genetic-algorithm-based approach”, J. Parallel
Distrib. Comput. 47, 1 (Nov. 1997), 1_15.

[12] M. Coli and P. Palazzari, “Real time pipelined system design through
simulated annealing”, J. Systems Architecture 42, 6_7 (Dec. 1996),
465_475.

[13] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by
simulated annealing, Science 220, 4598 (May 1983), 671_680..

[14] S. J. Russell and P. Norvig, “Artificial Intelligence: A Modern
Approach'”, Prentice_Hall, Englewood Cliffs, NJ, 1995.

[15] A. Y. Zomaya and R. Kazman, “Simulated annealing techniques, in
Algorithms and Theory of Computation Handbook” (M. J. Atallah,
Ed.), pp. 37-1_37-19, CRC Press, Boca Raton, FL, 1999.

[16] H. Chen, N. S. Flann, and D. W. Watson, “Parallel genetic simulated
annealing: A massively parallel SIMD approach”, IEEE Trans. Parallel
Distrib. Comput. 9, 2 (Feb. 1998), 126_136.

[17] P. Shroff, D. Watson, N. Flann, and R. Freund, “Genetic simulated
annealing for scheduling data-dependent tasks in heterogeneous
environments”, in ``5th IEEE Heterogeneous Computing Workshop

(HCW '96),'' pp. 98_104, 1996.
[18] I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro, “Improving

search by incorporating evolution principles in parallel tabu search”, in
1994 IEEE Conference on Evolutionary Computation, Vol. 2, pp.
823_828, 1994.

[19] F. Glover and M. Laguna, “Tabu Search”, Kluwer Academic, Boston,
MA, 1997.

[20] K. Chow and B. Liu, “On mapping signal processing algorithms to a
heterogeneous multiprocessor system”, in 1991 International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP'91),Vol. 3, pp. 1585_1588, 1991.

George Amalarethinam. D.I et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3659-3663

3662

George Amalarethinam. D.I et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3659-3663

3663

