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Abstract—The Grid computing provides the opportunity to use 
the remote resources in the network for resolving the large scale 
tasks. These large tasks can be either scientific or technology 
related tasks, which require large amount of processing time 
since they handle large amount of data. The major objective of 
grid computing is to decompose the larger tasks into smaller 
tasks, which can be either dependent or independent tasks. 
Mostly in the grid computing systems the resources can be of 
two types. They are homogenous system and heterogeneous 
system. The major problem of task scheduling or job scheduling 
comes when the resources are of different types. That is, the 
heterogeneous system, this problem of mapping the task to the 
resources is called the NP-Complete. The previous experiments 
and the results have proved that NP-Problem can be best solved 
by the heuristic approach rather than other approaches. In this 
paper we have proposed a new heuristic technique called Max-
min Average algorithm for task scheduling in the heterogeneous 
grid computing environment. Usually the performance of the 
grid computing is measured by the reduction in the idle time 
and makespan. The proposed Max-min Average algorithm 
proves that it is efficient than the other heuristic algorithms by 
reducing the idle time and make span than the other 
algorithms.  

Keywords— Grid computing, Task Scheduling, NP-Problem, 
Heuristic Algorithm, Load Balancing. 

I. INTRODUCTION 

Although many types of resources can be shared and used in 
a Grid system, usually they are accessed through an 
application running in the Grid. Normally, an application is 
used to define the piece of work of higher level in the Grid. 
An application can generate several jobs, which in turn can 
be composed of subtasks; the Grid system is responsible for 
sending each subtask to a resource to be solved. 

Scheduling is a process that maps and manages execution of 
independent tasks on distributed resources. Mapping tasks to 
machines in an HC Suite is an NP-Complete problem and, 
therefore the use of heuristics is one of the suitable 
approaches. Existing scheduling heuristics can be divided 
into two classes: On-line mode and Batch-mode heuristics. In 
the on-line mode, a task is mapped onto a host as soon as it 
arrives at the scheduler. In the batch mode, tasks are not 
mapped on to hosts immediately and they are collected in to 
a set of tasks that is examined for mapping at prescheduled 
times called mapping events. In this paper, we considered 
batch-mode heuristics. Different criteria can be used for 
evaluating the efficiency of scheduling algorithms, the most 
important of which are makespan and flowtime. Makespan is 
the time when Heterogeneous Computing system finishes the 
latest task. An optimal schedule will be the one that 
minimizes the makespan[1]. 

In this paper, we proposed an efficient heuristic Max-min 
average algorithm by taking the mean of the completion time 
of all tasks. Our algorithm aims to minimize the idle time and 
makespan of the tasks. 

The rest of the paper is organized as follows. In Section 2 
describes existing heuristics and meta-heuristics based 
workflow scheduling techniques on distributed systems such 
as Grid. Section 3 specifies the problem description.  The 
proposed Max-min Average algorithm is presented in Section 
4. Experiment results are presented in Section 5. Finally, this 
paper concludes with the direction for future work in Section 
6. 

II. LITERATURE SURVEY 

A set of static heuristic for task scheduling in heterogeneous 
computing environments are available. A range of simple 
greedy constructions heuristic approaches are compared and 
some of them are briefly described below:- 

OLB: Opportunistic Load Balancing (OLB) assigns each 
task, in arbitrary order, to the next machine that is expected 
to be available, regardless of the task's expected execution 
time on that machine [3],[4],[5]. The intuition behind OLB is 
to keep all machines as busy as possible. One advantage of 
OLB is its simplicity, because OLB does not consider 
expected task execution times, the mappings it finds can 
result in very poor makespans. 
MET: In contrast to OLB, Minimum Execution Time (MET) 
assigns each task, in arbitrary order, to the machine with the 
best expected execution time for that task, regardless of that 
machine's availability[3],[4]. The motivation behind MET is 
to give each task to its best machine. This can cause a severe 
load imbalance across machines. In general, this heuristic is 
obviously not applicable to HC environments characterized 
by consistent ETC matrices. 
MCT: Minimum Completion Time (MCT) assigns each task, 
in arbitrary order, to the machine with the minimum expected 
completion time for that task [3]. This causes some of the 
tasks to be assigned to the machines that do not have the 
minimum execution time for them. The intuition behind 
MCT is to combine the benefits of OLB and MET, while 
avoiding the circumstances in which OLB and MET perform 
poorly. 
Min-min: The Min-min heuristic begins with the set U of all 
unmapped tasks. Then, the set of minimum completion times, 
M={min0≤j<µ(ct(ti,mj)), for each ti # U}, is found. Next, the 
task with the overall minimum completion time from M is 
selected and assigned to the corresponding machine (hence 
the name Min-Min). 

George Amalarethinam. D.I et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3659-3663

3659



At last, the newly mapped task is removed from U, and the 
process repeats until all the tasks are mapped (i.e., U is 
empty)[3],[4],[6]. Min-min is based on the minimum 
completion time, as is MCT. However, Min-min considers all 
the unmapped tasks during each mapping decision and MCT 
only considers one task at a time. Min-min maps the tasks in 
the order that changes the machine availability status by the 
least amount that any assignment could. Let ti be the first 
task mapped by Min-min onto an empty system. The 
machine that finishes ti the earliest, say mj, is also the 
machine that executes ti the fastest. For every task that Min-
min maps after ti, the Min-min heuristic changes the 
availability status of mj 

Max-min: The Max-min heuristic is very similar to Min-min. 
The Max-min heuristic also begins with the set U of all 
unmapped tasks. Then, the set of minimum completion times, 
M, is found. Next, the task with the overall maximum 
completion time from M is selected and assigned to the 
corresponding machine (hence the name Max-min). At last, 
the newly mapped task is removed from U, and the process 
repeats until all the tasks are mapped (i.e., U is 
empty)[3],[4],[6]. Intuitively, Max-min attempts to minimize 
the penalties incurred from performing tasks with longer 
execution times. For example, assume that the metatask 
being mapped has many tasks with very short execution 
times and one task with a very long execution time. Mapping 
the task with the longer execution time to its best machine 
first allows this task to be executed concurrently with the 
remaining tasks (with shorter execution times). For this case, 
this would be a better mapping than a Min-min mapping, 
where all of the shorter tasks would execute first, and then 
the longer running task would execute while several 
machines sit idle. Thus, in cases similar to this example, the 
Max-min heuristic may give a mapping with a more balanced 
load across machines and a better makespan. 

by the least possible amount for 
every assignment. Therefore, the percentage of tasks 
assigned to their first choice (on the basis of execution time) 
is likely to be higher for Min-min than for Max-min (defined 
next). The expectation is that a smaller makespan can be 
obtained if more tasks are assigned to the machines that 
complete them the earliest and also execute them the fastest. 

Duplex: The Duplex heuristic is literally a combination of the 
Min-min and Max-Min heuristics. The Duplex heuristic 
performs both of the Min-min and Max-min heuristics and 
then uses the better solution [3],[4]. Duplex can be performed 
to exploit the conditions in which either Min-min or Max-
min performs well, with negligible overhead. 
GA : The Genetic algorithm (GA) is a technique used for 
searching large solution spaces[7],[8],[9],[10],[11]. The GA 
operates on a population of chromosomes for a given meta-
tasks. The initial population is generated by two methods. In 
the first method, a chromosome is generated randomly from a 
uniform distribution. In the second method, a chromosome is 
generated by Min-min and it is called “seeding” the 
population with a Min-min chromosome. 
SA: Simulated Annealing (SA) is an iterative technique that 
considers only one possible mapping for each meta-task at a 
time. Simulated annealing uses a procedure that 
probabilistically allows poor solutions to be accepted to 
attempt to obtain a better search of the solution space based 
on a system temperature [8], [12], [13], [14], [15]. 
 

GSA: The Genetic Simulated Annealing (GSA) heuristics is a 
combination of the GA and SA techniques [16],[17]. GSA 
follows the procedures similar to the GA. For the selection 
process, GSA uses the SA cooling schedule and system 
temperature. 
Tabu: Tabu search is a solution space search that keeps track 
of the regions of the solution space to avoid repeating a 
search near the areas that have already been searched 
[8],[18],[19]. A mapping of meta-tasks uses the same 
representation as a chromosome in the GA approach. The 
implementation of tabu search begins with a random 
mapping, generated from a uniform distribution. 
A*: A* is a tree search technique based on an m-array tree, 
beginning at a root node that is a null solution [20]. As the 
tree grows, intermediate nodes represent partial mappings 
and leaf nodes represent final mappings. Each node has a 
cost function, and the node with the minimum cost function 
is replaced by its child node. Whenever a node is added, to 
reduce the height of the tree, the tree is pruned by deleting 
the node with the largest cost function. This process is 
repeated until a complete mapping (a leaf node) is reached. 
Though the above stated heuristic algorithms have 
advantages, they do have their own disadvantages. OLB 
leads to poor makespan since it does not consider the 
expected execution time while mapping the meta-tasks to the 
machines and it is also hard to achieve dynamic load balance 
of jobs. MET results in severe load imbalance across the 
machines. Static mapping of meta-task to machine using 
MCT heuristic algorithm leads to poor makespan since it 
takes more time for a job to map to the particular machine. 
Max-min is appropriate only when most of the jobs arriving 
to the grid systems are shortest and also Max-min 
outperforms Min-min. The experimental results show that 
Duplex, SA, GSA, and Tabu do not produce good mappings. 
Min-min, GA, and A* were able to deliver good 
performance. GA is better than Min-min by few percents, 
and also it has to be “seeding” the population with a Min-min 
chromosome to obtain its good performance. In different 
situations, A* produce better or worse mappings than Min-
min and GA. Among the three algorithms, Min-min is the 
fastest algorithm, GA is much slower, and A* is very slow. 
Among the stated algorithms, Min-min is the simple and 
fastest algorithm and its good performance depends on the 
choice of mapping the meta-tasks to the first choice of 
minimum execution time. However the drawback of Min-min 
is that, it is unable to balance the load because it usually 
assigns the small task first and few larger tasks, while at the 
same time, several machines sit idle, which leads to poor 
utilization of resources. The proposed algorithm retains the 
advantage of Min-min algorithm and reduces the idle time of 
the resources, which in turn leads to better makespan. 

 
III. PROBLEM DESCRIPTION 

We consider a scheduling problem where tasks are to be 
allocated immediately to the resources in a global, 
heterogeneous and dynamic environment. The allocation 
should be as fast as possible, while at the same time 
optimizing several criteria such as response time, utilization 
and slowdown.  The tasks have to be completed on a unique 
resource. There are no dependencies between tasks (each task 
is independent). The arrival rate of tasks determines the 
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system load.  Since we consider a heterogeneous 
environment, the processing capacity of each resource in the 
system may vary significantly and thus yields different 
runtimes for a particular task on different machines. 
 An instance of the problem consists of the following:  
- A number of independent tasks to be scheduled  
- A number of heterogeneous machines (resources)  
- The task’s expected time to compute on each machine. 
(This depends on the workload of each task and computing 
capacity of each machine). The ETC matrix: ETC[i][j] is the 
expected execution time for task i on machine j.  
- Ready time (ready[m]), the time when machine m will 
finish the previously assigned tasks.  
In this work, we assume that the computation time for each 
task is known accurately before the task begins the execution. 
 
IV. MAX-MIN METHODOLOGY AND 

IMPLEMENTATION 
        Task scheduling system is the most important part of 
grid resource management system. The scheduler receives 
the task request, and chooses appropriate resource to run that 
requested task. In this paper, the formulation of task 
scheduling is based on the expected time to compute (ETC) 
matrix. A meta-task is defined as a collection of independent 
task (i.e. task doesn’t require any communication with other 
tasks) [1, 9]. Tasks derive mapping statically. For static 
mapping, the number of tasks, t and the number of machines, 
m is known as priori. ETC (i,j) represents the estimated 
execution time for task ti on machine mj. The expected 
completion time of the task ti on machine mj
           ct (t

 is 
i, mj) = mat(mj) + ETC(ti, mj

where mat (m
) 

j) is the machine availability time. i.e. the time 
at which machine mj

               makespan = max (ct (t

 completes any previously assigned 
tasks. The main aim of the heuristic scheduling algorithm is 
to minimize the makespan  

i, mj
The proposed heuristic scheduling algorithm Min-mean 
works in two phases. 

)) 

• In phase 1, the task allocation is done based on the Max-
min algorithm. 

• In phase 2, the mean of completion time of all the 
machines are taken. The machine whose completion 
time is greater than the mean value is selected. The tasks 
allocated to the selected machines are reallocated to the 
machines whose completion time is less than the mean 
value. 

The related definition of proposed Max-min Average 
heuristic scheduling algorithm is as follows: 
• ETij - the amount of time taken by machine Mj to 

execute Taski given that Mj is idle when Taski

• CT

 is 
assigned. 

j - the expected completion time of M
• Mat (m

j 
j

• Group (CT

) - the machines availability time i.e. the time at 
which Machine j completes any previously assigned 
tasks. 

i

• The best minimum task/machine pair (m, n) is selected 
from the Group 

, Machines) –The function “f1” is used to 
group all the tasks and machines that has minimum 
completion time. 

• MeanCT- is used to find the mean completion of all the 
machines. 

Algorithm Max-Min Average 
(1) While there are tasks to schedule 
(2) For all Taski
(3) For all Machine

 to schedule 

(4) Compute CT
j 

i,j ; CTi,j = Mat (mj) + T
(5) End for 

ij 

(6) Group (CTi, Machines) =f1 (CTi, 1, Ti
(7) End for 

, 2 ...) 

(8) Select the best maximum pair (task, machine) from the 
Group 
(9) Compute maximum CT
(10) Reserve task m on n 

m,n 

(11) End while 
//Optimization based on MeanCT 
(12) Calculate MeanCT= (ΣCT j)/No of machines 
(13) For all Machine
(14) if (CT

j 
j

(15) Select tasks reserved on the host 
<=MeanCT) 

(16) End for 
(17) For all Taski
(18) For all Machine

 reselected 
j with (CTj

(19) Compute NewCT
 >=MeanCT) 

i,j = CT(taski, hostj
(20) if(NewCT

) 
i,j

(21) Group (CT
>= MeanCT) 

i, Machines) =f1 (CTi, 1, CTi
(22) End for 

, 2 ...) 

(23) Select the best maximum pair from the Group 
(24) Reschedule (taski on machinej
(25) Compute NewCT

) 

(26) End for 
m,n 

 
V. EXPERIMENT RESULTS 

 
TABLE I : Sample ETC matrix 

TASK # M1 M2 
T1 1 2 
T2 2 4 
T3 5 9 

 
Min-min heuristic scheduling algorithm executes all the 
shortest tasks first and then the longest tasks. Table 1 gives a 
sample ETC matrix, with the expected execution time of 
three tasks (t1, t2, t3) on the two machines (m1, m2). This 
sample ETC matrix clearly explains how proposed Max-min 
average heuristic scheduling algorithm performs better than 
the Min-min algorithm. It is assumed that both the machines 
are idle at the start. 
The sequence of the execution of Min-min algorithm and the 
proposed Max-min average heuristic scheduling algorithm is 
as follows: 
Step 1: Static mapping of tasks to machines based on Min-
min is shown in Figure 1. Min-min algorithm gives a 
makespan of 8 sec. 
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Figure 1: Results of Min-min algorithm 

Step 2: The mean completion time for the sample ETC 
matrix can be calculated by using the following relation: 

MeanCT = CTm1+CTm2 
where  CTm1: Completion time of all tasks on machine  m1,  
CTm2: Completion time of all tasks on machine m2. 
MeanCT = 4 sec. 
Step 3: Tasks on machines m1 are selected as shown in the 
Figure 2 because of  CTm1 > MeanCT. 

 
Figure 2: Selected tasks on machine m1 

 
Step 4: Rescheduling of the tasks on machine m1 to the 
machine m2 is done, whose expected execution time is 
ETi
The final scheduling of the tasks (t1, t2, t3) on two machines 
(m1, m2) using the proposed Min-mean heuristic scheduling 
algorithm is shown in the Figure 3. Min-mean heuristic 
scheduling algorithm gives a makespan of 7 sec. 

 >= MeanCT 

 

 
Figure 3 : Results of Max-Min Average Algorithm 

 
The Figure 1 and Figure 3 clearly show that the Max-min 
Average heuristic scheduling algorithm performs better than 
Min-min algorithm. 
The comparison results of Figure 1 and Figure 3 is as 
follows: 
• The idle time of the machine m2 is reduced. 
• The load is well balanced in both the machines m1 and 

m2. 
• The measure of the throughput of the heterogeneous 

computing systems is termed as makespan. The 
makespan can be calculated as makespan = max (CTi

reduced compared to that of the makespan using  Min-
min. 

) 
Ti ε meta-tasks makespan = 7 sec. Figure 1 and Figure 
3 shows that the makespan using Max-Min Average is 

 
CONCLUSION AND FUTURE WORK 

The experimental results show that the Max-min Average 
heuristic scheduling algorithm performs better than the 
existing heuristic algorithm in various systems and settings 
and also it delivers improved makespan on various 
heterogeneous environments. The future research will be 
directed towards the factors such as CPU workload, 
communication delay and so on. 
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